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A two-variable model proposed for the acidic nitrate-ferroin reaction is considered in the 
reaction-diffusion context. An initial-value problem in which an amount of nitrate is intro- 
duced locally into ferroin at uniform concentration is treated both analytically and numeri- 
cally. It is shown that the large time structure is a reaction-diffusion travelling wave of 
permanent form propagating with constant speed. This asymptotic wave speed is shown to be 
the minimum possible wave speed and the asymptotic approach to this value is estimated. Prop- 
erties of the permanent-form travelling waves are derived and solutions valid for small and 
large values of a parameter/3, involved in the kinetic mechanism, are obtained. 

1. In troduct ion  

In a series of  recent papers [1-3], Pota  and co-workers  have described their 
work  on the development  of  reaction-diffusion travelling waves in the acidic 
nitrate-ferroin reaction. In [1,3] the basic kinetic mechanism is obta ined and the 
various appropr ia te  simplifying assumptions and approximat ions  detailed. This 
reduct ion leads to essentially a two-variable kinetic scheme f rom which a pair  of  
reaction-diffusion equations are derived. An expression for the asymptot ic  wave 
speed of  any travelling waves that  may  be initiated is then deduced f rom these equa- 
tions. This theoretical value for the wave speed is then compared  with their experi- 
mental  results, and the two are found to be in good agreement over mos t  o f  the 
operat ing range of  their experiments, and certainly where the approximat ions  
made  to reduce the kinetic scheme are valid. In [2] the travelling wave profiles that  
arise are considered further and compared  with experimental observations.  

In this paper  we consider the reaction-diffusion system derived in [1] in more  
detail. This system involves, as dependent  variables, the concentrat ions of  the fer- 
roin and acidic nitrate, which we represent by u and v respectively. We  assume dif- 
ferent diffusion coefficients, Du and Dr respectively, for ferroin and the nitrate, 
previously they were assumed to be the same. We  set up an initial-value prob lem in 
which it is assumed that ferroin is present at a uniform concentrat ion u0, with the 
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acidic nitrate being introduced locally (which is effectively how the experiments 
described in [1,2] were performed). This initial-value problem is analysed in detail 
and it is shown that the large-time behaviour is a permanent-form travelling wave, 
propagating with an asymptotic wave speed which is independent of Du, being 
dependent only on Dr and the kinetic mechanism. 

From [1] the reaction is governed essentially by the scheme 

NO~ + HNO2 + H + ~ 2NO2 + H20,  (1) 

NO2 + Fe(phen)3 2+ + H + --~ HNO2 + Fe(phen)] + . (2) 

Under the assumptions that the steady state approximation can be applied to the 
NO2 species and that the initial concentration of NO~ is very much larger than that 
of the ferroin, the overall rate equation is 

k[HNO2] [Fe(phen) 2+ ] 
r = (3) 

/3 + [Fe(phen) 2+] ' 

where 

k = kl[H+][NO3] and /3 = 2k- l [NO2]ss  
k2[H +] 

are taken to be constant. 
The distribution ofu and v in space and time is then governed by the equations 

Ou 02u 2kuv 
O---[ = Du'-~x 2 3 + u ' (4) 

Ov 02 v kuv 
0t  = D~b-~x~ + j +  u (51 

The equations are to be solved subject to the initial and boundary conditions 

u = u o ,  t = O ,  - c ~ < x < c ~ ,  (6) 

vog(x), Ixl<l,  
v =  0, Ixl>l,  t = 0 ,  (7) 

u--*u0, v--+0 as I x l ~ ,  t ~ 0 ,  (8) 

where u0 and v0 are constants and g(x )  is continuous and differentiable on 
- I  < x < l with a maximum value of unity. 

To make eqs. (4), (5) and conditions (6)-(8) dimensionless, we introduce the 
variables 
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u = uo U , v = uo V , r = k t  and 

Equations (4), (5) then become 

OU o~U 2 U V  

Or - 6-ff--~ /3 + u ' 

J (  = - - x .  (9) 

(10) 

o v  o2 v u v  

o r  - o ~  -~ /3 + u ' 

where ~ = Du/Dv  and 13 = f l /uo. 

The initial and boundary conditions are 

U = I ,  - o o < X < o o ,  r = 0 ,  

and 

(11) 

(12) 

f v0 Ixl<~, 
V = r = 0  (13)  I, 0--a(x)' Ixl>~, ' 

V---~0, U--+I as I X l ~ c ~  ( r ~ 0 ) ,  (14) 

where V0 = vo/uo and a = V/k-ff/Dv. The  function G ( X )  is assumed to be positive 
and continuous with a maximum value of unity on IX I < a. 

An important feature of the system given by (10), (11) is the initiation of 
reaction-diffusion travelling waves of permanent form and it is with this aspect that 
we start our discussion. 

2. Permanent - form travelling waves 

A permanent-form travelling wave (PTW) is a solution of the partial differential 
equations (10), (11) of the form U = u(y), V = v(y), where y is the travelling 
coordinate 

y = X - c r ,  c > 0 ,  (15) 

i.e. u(y) and v(y) satisfy the ordinary differential equations 

2uv 
8d'  + c d  - - - 0 ,  (16) 

/ 3 + u  

UV 
v" + cv' -~ - -  -- 0 (17) /3+u 
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satisfying boundary  condit ion (14), namely 

u - + l ,  v--+0 as y - + ~ .  (18) 

Fur thermore ,  for a PTW we require a solution to eqs. (16), (17) which is non- 
negative, non-trivial (i.e. u ~ 1 or v ~ 0) and for which the derivatives o f  u and v 
approach  zero as y --+ + oo. We note that  a PTW does satisfy initial conditions (12), 
(13). We start by noting: 

R1. In a PTW, u ~ 1 or v ~ 0 
Clearly, ifv - 0, eqs. (16), (18) give u - 1, and i fu = 1, eq. (16) gives v - 0. 

R2. In a PTW, u(y) >0,  v(y) > O on - o o  < y <  oo 
The p roof  of  this result follows directly f rom an analogous result in Merkin  et al. 

[4] or Billingham and N e e d h a m  [5]. 

We can now determine the conditions as y - +  - oo. If  we combine eqs. (16), 
(17), integrate once and apply boundary  condit ion (18) we obtain 

6u' + 2 , /+ c(u + 2v - 1) = O. (19) 

Consequently,  we must  have 

u-+O, v - + l / 2  or v - + 0 ,  u - + l  as y - + - o o  (20) 

since, f rom (16), (17), uv -+ 0 as y -+ - oo. Now,  suppose v -+ vs as y ~ - oo. I f  we 
apply f~oo '"  dy to eq. (17) and use boundary  condit ion (18), we obtain 

= foo uv dy>O (21) 
CVs J_~/3  + u 

f rom R2. Hence we must  have, f rom (20, 21) 

u---~0, v---~ 1/2 as y---~ - oo (22) 

and this completes the description of  the PTW. 
We can establish the further  results. 

R3. In a PTW, u(y ) is monotone increasing and v(y ) is monotone decreasing 
F r o m e q .  (16) wehave ,  on multiplying by e cy/6 and integrating, 

d(Y) = ~e-Cy/' f voo eCs/' U(S)v(s)fl + u(s) ds. 

F r o m  R2 it then follows that  

d(y)>0  on - o o < y < c ~ .  

In a similar way, we can also establish that  

(23) 

(24) 
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f 
Y u v  

vt ( y )  = - - e  -cy  e ca d s  , 

, I - - 0 0  

giving 

v ' (y)<0 on - c ~ < y < o o ,  

which establishes the result. 

(25) 

(26) 

We also have 

R4. u + 2v> l i f 6 < l , u  + 2 v < l  i f6> l ,u  + 2 v =  l / f 6 =  1 
Put w = u + 2v - 1, then from eq. (19) 

w' + cw = (1 - 6)u'. (27) 

On multiplying eq. (27) by e cy, integrating and applying boundary condition (22), 
we obtain 

Yecsu I (s) w(y) = (1 - 6)e -cy ds. (28) 

From R3 the integrand in (28) is strictly positive and the results follow. 

(a) Behaviour as y ~ cx~ 
The behaviour of the solution as y ~ oo is determined by linearizing eq. (17) 

about (1, 0), the unreacted state ahead of the wave. This equation has a solution of 
the form v oc e &, where 

A=~I ( - c  4- V/C 2 - 4/(1 + 13)) . (29) 

We require A to be real otherwise negative values of v would result. Hence a neces- 
sary condition for the existence ofa  PTW is that c/> cmi,, where 

Cmin = 2/X/~ +/3.  (30) 

We shall establish that any travelling waves which emerge as long-time solutions 
to the initial-value problem with initial data for v having compact support will tra- 
vel with their minimum possible speed, i.e. their asymptotic wave speed is 
c,,i, = 2/~In_ .. ,1/ terms of the original variables this gives an asymptotic wave 
speed 2(kuoD,) / /x / (uo  + ~). It is important to note that this depends only on the 
diffusion rate of the autocatalyst (acidic nitrate) and not on that of the ferroin. 

Finally we have that 

v ~ Ao e~+y as y--+cx~ (31) 

when c >  c,,i, (where A+ is the root associated with the positive sign in (31)) and 
when c = cmi,, A = - c / 2  and 



362 3".1t. Merkin, M.A. Sadiq / Reaction-diffusion travelling waves 

v ~ (Aoy + Bo)e -y/x/i--~ + . . .  as y--*oo 

for constants A0 and B0. 

2.1. S O L U T I O N  F O R  fl L A R G E  

(32) 

U/3 
v" + ~v' + 1 + U]~ - 1  - -  0 (35) 

(primes denote differentiation with respect to Y). Equations (34), (35) suggest look- 
ing for a solution by expanding 

u( r ;~ )  = uo(r) + ~ - l u l ( r )  + . . . ,  

v( Y; /~) = vo( Y) + /~-lvl( Y) - t- . . .  , 

~(~) : co + 9-1Cl + . . . .  

At leading order we obtain 

bug + cod o - 2uovo = O, 

II ! 
v O+cov O+uOvO=O 

subject to 

u0-+ 1, v0--+ 0, Y---~ c~, 

u0---~0, v0-+l /2 ,  y--+ _ ~ .  

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

The system (39)-(42) is essentially the same system (for quadratic autocatalysis) 
discussed in detail by Billingham and Needham [5] and need not be considered 
further. The terms of O(/~ -1) are solvable with cl being determined in terms of co. 
Expansion (36)-(38) is then a regular expansion and no further regions are 
required. The important point to note from this analysis is that the wave speed 
becomes small, of O (fl- 1/2), and the reaction region becomes large, of lateral extent 
O(fll/2), as/~ increases. 

Expression (30) shows that c i s  O(/~ -1/2) for fl large. This suggests that to obtain 
a solution of eqs. (16), (17), (18) and (22) valid for/3 large we should put 

c = fl-1/2~, Y = 3-1/2y (33) 

and leave u and v unscaled. This leads to the equations 

2uv 
8u" + ~u' l + u f 1 - 1 -  0 ' (34) 
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2.2. SOLUTION FOR SMALL 3 

Putting/3 = 0 in eq. (17) leads to a linear equation for v(y) which cannot have a 
solution satisfying both boundary conditions (18) and (22). Thus we expect the 
expansion for small 3 to be singular requiring the matching of inner and outer 
regions. We start in the inner region at the rear of the wave, where u is small, 
v -~ 1/2 and c is O(1). A balancing of terms in eqs. (16), (17) then suggest that we 
write 

u = / 3 U ,  ~ = [3-1/2y (43) 

and leave v and c unscaled. This region is thin, having extent of O(/31/2). When 
(43) is substituted into eqs. (16), (17), an expansion of the form 

U(~p;/3) = U0(~P) +/31/2U1(~) + . . . ,  (44) 

v(~; /3) = 1+/31/2Vl(y ) + . . . ,  (45) 

c(/3) = co +/31/2cl + . . .  (46) 

is suggested. At leading order we obtain the equation 

,, Uo _ 0 (47) 
6U; 1 +---~o 

subject to 

U0-+0, ~p-+ - oc. (48) 

Equation (47) can be integrated once to give, on applying (48) and using R3, 

- ~ [U0 - log(1 + U0)] 1/2 . (49) dUo 
ay 

Equation (49) cannot be integrated further to find U0 explicitly. However, from 
(49) we have that 

Uo~  + . . .  

At 0(/31/2 ) we obtain 

Vl = 0 ~  

8U[' - U1 
(1 + Uo) 2 

subject to 

as ~P--~ ec. (50) 

-= --CO U; 

(51) 

(52) 
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UI-+0 as - 9 - + - 0 o .  (53) 

The details of the solution of (52), (53) are not important, we require only the 
behaviour as.9 -+ 0o, finding that 

CO =3 
U1 ~ ~ y  + . . .  as -9-+0o. (54) 

A consideration of the terms of O(/3) shows that 

-92 
v 2 , - ~ - ~ - + . . ,  as 9 -+0o .  (55) 

The solution in the inner region does not satisfy the conditions at the front of the 
wave and a further, outer region is required in which these boundary conditions are 
attained. A consideration of the behaviour of u and v as -9-+ 0o suggests that the 
outer region has an extent of O(1) and that we should leave u, v and y unscaled. An 
expansion in powers of/51/2 is then suggested, the leading order terms (uo(y), 
vo (3')) of which satisfy 

6 4  + co4 - 2vo = 0, (56) 

II I v o + coy o + v0 = 0 (57) 

subject to 

u 0 - + l ,  vo-+O as y -+0o  (58) 

and, on matching with the inner region, that 

y2 coy3 1 y2 
uo~-,26 6 6 2 . . . ,  v o ~ - ~ - + . . ,  as y - + 0 .  (59) 

The solution ofeqs. (56), (57) is readily found as 

1 
vo - 2(#+ - #_) [lz+eU-Y -/~-eU+Y] ' (60) 

where #~: = l ( - c 0  + ~ ( ~ o - 4 ) ) ,  (0> /~+>#_) toge the r  with a somewhat more 
complicated solution for u0 (y). rn the special case when co --- 2 (equal roots or mini- 
mum speed case) we obtain 

vo = 1(1 + y)e -y , (61) 

1 
u0 = 1 + ( 6 -  2) -------7 ( [ (6 -  2)y + (36 -4 ) ] e  -y - / $ ( 6 -  1)e -2y/~) (62) 

for 6 ¢ 2, and when 6 = 2 

u0 = 1 - (1 + y + y2/a)e-Y.  (63) 
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The  s t ructure  of  the P T W  for/3 small is now clear. At  the rear o f  the wave the con- 
cent ra t ion  u rises rapidly, over a region of  0(/31/2) thickness,  f rom its fully reacted 
state, while v remains virtually constant .  Ahead  of  this region, the concent ra t ion  v 
falls slowly, over a region of O(1) thickness, to its unreac ted  state, while u slowly 
at tains its value ahead  of  the wave. 

2.3. NUMERICAL RESULTS 

We solved eqs. (16), (17) numerical ly for a range of  values of  3 and  6, t h r o u g h o u t  
we took  the m i n i m u m  wave speed, as given by (30). The  results (concentra t ion  pro-  
files for u and  v) are shown in figs. 1 and 2. 

We star ted by considering the effect of  varying/3  while keeping 6 fixed. In fig- 
ure 1 a, we show concent ra t ion  profiles for the case 6 = 1,/3 = 1. N o t e  tha t  the 
spread of  u and v f rom their asymptot ic  values are comparab le  in extent. We next  
took  6 = 1 and/3 = 10. Here we again see that  u and  v to have comparab le  react ion 
zones, bu t  now, f rom (33) we expect this region to be more  spread out  than  tha t  
for the case/3 = 1, as is seen in fig. 1 (b). 

Fo r  small  values of  3 we expect a double-region structure to develop a long the 
lines of  the analysis described in the previous section. This can be seen in figure lc  
(for/3 = 0.01 a n d 6  = 1). 

We next  explored the change in s tructure as 6 is varied. The results are shown in 
fig. 2(a), (for 6 = 10) and figure 2b (for 6 = 0.1), in bo th  cases/3 = 1, to  compare  
with fig. l(a). F r o m  R4 u + 2v > 1 or < 1 depending  on whether  6 < 1 or 6 > 1, which 
can be seem to be the case in figs. 2(a) and  2(b). Also, we see tha t  the react ion region 
becomes  more  spread out  as 6 is increased. 

3. Initial-value problem 

3.1. A PRIORI BOUNDS 

It  is s t ra ight forward  to show, using s tandard  results, given, for example,  by 
Bri t ten [6], tha t  

U(X,'r)>~O, V(X,T)>.O for - o c < X < o c ,  r~>O. (64) 

We can then  use (64) to  show that  ~r - 1 is a supersolut ion for eq. (1 O) and  establish 
tha t  [6] 

O<U(X,T)<I , -c~<X<~,  7>~0. (65) 

We are unable  to derive an upper  bound  on V for general values of  6. However ,  
for  the special case 6 = 1, we have tha t  W = U + V satisfies the diffusion equa t ion  
on - ~  < X < ~ ,  T~>0, subject to 
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Fig. 1. Concentrat ion profiles, u(y), v(y), obtained from solving eqs. (16), (17) numerically for the mini-  
m u m  speedwave (c given by (32)) for 6 = 1.0 and (a) ~ = 1.0, (b) fl = 10.0, (c) fl = 0.01. 
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Fig. 2. Concentration profiles, u(y), v(y), obtained from solving eqs. (16), (17) numerically for the mini- 
mum speed wave (c given by (32)) for/3 = 1.0 and (a) 8 = 10.0, (b) 6 = 0.1. 

W(X,O)  = 1 + Vog(X),  -oc<X<oo,  

W - + I  as [Xl--+oo, ~-~>0. 

From the maximum principle for the diffusion equation, we have 

W(X,r)~<I+V0, - o o < X < ~ ,  r~>O. 

It then follows from (65) that, for 3 = 1, 

O~<V(X,'r)~<I+V0, - ~ < X < o o ,  "r~>O. 

(66) 

(67) 

(68) 

(69) 

The existence of the invariant rectangle for U(X, ~'), V(X, "r), given by (65), (69) 
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guarantees the existence of a unique global solution, Smoller [7]. We expect a simi- 
lar result to hold for 5 # 1, but are unable to establish it rigorously. 

3.2. A S Y M P T O T I C  ANALYSIS  

An asymptotic theory can be developed for initial-value problem (10)--(14) 
which follows closely that described previously for a similar problem by Billingham 
and Needham [8] and used to discuss a somewhat different reaction-diffusion prob- 
lem by Needham et al. [9]. This starts with a solution for 7- small, which is then 
matched to a solution valid for X large and 7- of O(1). Finally, this solution is then 
matched to a solution valid for 7- large. It is shown in [8] that the initial development 
has the Gaussian form, typical of solutions of the diffusion equation on a semi- 
infinite domain, and that to obtain a solution, valid for X large and 7- of O(1), for 
initial data of the form given by (13), (i.e. having compact support), we should put 

U =  1 +o (1 ) ,  V = e  -x2~'(x'~), (70) 

where v(X, 7-) is positive as X --* cx3. 
When (70) is substituted into eq. (11) an equation for V results, a solution of 

which is sought by expanding, (following [8]) 

{l/(X, 7-) = ~1/0(7- ) -~- Y - 1  lptl (7-) --t- X-2{tt2(7-) -+- . . . .  (71) 

After a little algebra the equations for the ~'i (i = 0, 1, 2.. .)  can be solved in turn 
to get 

1 a l  7- 1 a 2 (72)  = - + ~ log 7- + - log a2 V 0 = ~ ,  V1 ~ ,  V2 1+/3 47- 

for constants a l  and a2. From (70)-(72) it then follows that 

V ~ a 2 e x p  ( X + a l ) 2  l l o g T +  as X---~cx~ 7-ofO(1) .  (73) 
47- ' 

Expression (73) suggests that a travelling wave evolves for 7- large with a propaga- 
tion speed 2/(x/q- + 13) + O(7--1), which will be confirmed below. 

As 7---~ oo, expansion (71), (72) remains uniform for X >> 7-, but becomes non- 
uniform when X ~ 7-. This suggests that to obtain a solution valid for 7- large, we 
should start by introducing the travelling co-ordinate 

y = X -  S(7-), (74) 

where S(7-) is 0(7-) as 7---+oo, and leave U and V unscaled. This results in the 
equations 

02U dS OU 2UV OU 
-~y2y2 +-dT- coy t3+ U -  07- ' 

(75) 
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OZV dS OV UV OV 
Oy 2 + dT Oy ~ 3 + U OT " (76) 

A solution ofeqs. (75), (76) is sought by expanding 

U = uo --t- T-1/2Ul  + T - l u 2  "l- . .  • , 

V = 'V 0 --[- T- l /2? . )  1 .qU 7--11)2 + . . .  , (77) 

S = cot + Cl log r + . . . .  

The leading order problem is just the permanent-form travelling wave equations 
(16), (17) discussed in the previous section. At O (r-l/a) we obtain 

U 1 = blU/0, V 1 = blVlo (78) 

for any constant hi. At O(~ --1) we obtain equations, the solution of which can be 
expressed in terms of (u0, v0). The details are not important, we note only that, as 
y - - "  oO,  

clAoA+ ye~+y + . . .  (79) 
v 2 ~ -  2 + c 0  

when c > cmin, on using the asymptotic form for v0 (y) given by (31), and 

V2 r'~ CI [ ' . 6 ~  A°y3 + (V~--  Ao) + ...] exp( -y /v /X+/3)  (80) 

when c = Cmin, on using (32). 
Now the present solution has to match with (73) as y--~ ~ .  If we write the expo- 

nent in (73) in terms of y, using (74) and expand S(~-) using (77), we find that this 
is possible only if 

~ =  1 2 
i.e. co = - -  = Cmi,. 

4 1+13 

From this we can deduce that, for initial data for V with compact support, the 
permanent-form travelling wave which emerges as the long time solution of the 
initial- value problem will travel with its minimum possible speed. 

We now proceed with our asymptotic analysis with co = Cmin, when the asympto- 
tic forms for v0, vl and v2 are given by (32) and (80). We can see that, in this case, 
expansion (77) becomes non-uniform when y is O(r  1/2) for r large, and a further 
region is required in which we write 

U = 1 + o(1), V = "rl/2e-C°y/2F(rl,'r), r 1 = y/'r 1/2 , (81) 

where co = 2 / ( ~ ) .  On substituting transformation (81) into eq. (76) we 
obtain, on neglecting exponentially small terms, 
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( ) 1 4 dS T_I/2 ( d S  _ co 
2 1 + 3 co ~ V + \a~- O~ 

+ r -  ~ ~ F  ~OF 1 r - ~  0 (82) 
~--~2+20r/ ~ F -  = , 

which has to be solved subject to matching with the asymptotic forms for v0, vl, 
v2... as r/--~ 0. Equation (82) suggests looking for a solution by expanding 

V(rl, r) = ro(rl) + r-I/2Fl (77) + . . .  (83) 

together with expansion (77) for S(r). 
At leading order, we obtain 

F~'-t-r/ ' (1 ~ )  ~V~- ~+ r0=0 (84) 

subject to 

clAo _3 (85) Fo ~ AorI + 6x/i__~71 + . . .  as 7/-+0. 

The solution to eq. (84) satisfying (85) can be expressed in terms of confluent hyper- 
geometric functions, [10] as 

F°=A°rle-~/41F1(~ +c°c13r12)2 ;2;-4- " (86) 

This solution is only algebraic for 77 large, and thus violates the asymptotic form 
(73), unless the series given in (86) terminates which requires 3/2 + cocl/2 to be 
zero or a negative integer. However in this latter case the solution has ranges of r/ 
over which F0 is negative, unless 3 + cocl = 0, giving finally 

3x/T +/3 Fo = Ao~Te -r?/4 (87) Cl-- 2 ' 

The solution to equation for F1, the term of O('r-I/2), follows very closely the analo- 
gous equation given in [8]. The details are not important, only to note that this 
determines the constant bl. 

The analysis presented above shows that for ~- large a travelling wave structure 
evolves propagating with speed given by 

S ~  ~ 1  (2 3(1+/3)+...)2r a s - r - + o o .  (88) 

Expression (88) shows that, though ultimately the wave will propagate with its 
minimum possible speed as given by (30), the approach to its asymptotic value is 
relatively slow, being only of O(r -1 ) for r large. 

To confirm the above predictions, as well as giving results where the asymptotic 
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theory does not hold, we go on to describe results obtained from numerical integra- 
tions of the initial-value problem. 

3.3. N U M E R I C A L  RESULTS 

Initial-value problem (10)--(14) was solved numerically using essentially the 
same scheme described in Merkin and Needham [11]. This method is effectively a 
Crank-Nicolson method using Newton-Raphson iteration to solve the sets of non- 
linear algebraic equations which arise at each time step. From the numerical inte- 
grations, which give concentration profiles at equal steps in X at each time step, we 
calculated the position of the reaction-diffusion front, which we took to be at that 
value of X at which U = 1/2. This was done using interpolation on the nearest cal- 
culated values to this point. This then enabled us to calculate the speed of the travel- 
ling front, using central differences. 

We started by considering different values of 6 for a given value of ft. The results 
for fi = 1.0 and 6 = 0.1, 1.0 and 10.0 are shown in figure 3, where we plot the calcu- 
lated wave speed c against T. We can see that all three curves are approaching the 
same constant value of v~,  as predicted by the theory, confirming that the asymp- 
totic wave speed is Cmi,,, independent of the value of 6. We also note from this figure 
that the approach to this asymptotic value is rather slow, again as suggested by 
(88). We also monitored the wave profiles for large values of-r and these were seen 
to be identical to those shown in figures 1 and 2. 

We next considered the effects of changing fl for a given value of 6. We took 
6 = 1.0 and obtained results for/3 = 10.0, 1.0, and 0.1. The results are shown in fig- 
ure 4, where we plot the wave speed c against ~- for these different cases (the results 
for fl = 1.0 have already been given in fig. 3). Again these figures show that, for -r 

1 , 4 5  

1 , 4 0  - 

1 . 3 5 -  

1 3 0  - 

1 . 2 5  - 

1 ~20 - 

L 1 5 -  

1 . 1 0  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ j  

0.1 

1.0 

I I I I I I 
2 0  ~ ~ ~ 1 ~  1 ~  1 ~  

T 

Fig. 3.Wave speed c calculated from the numerical solution of the initial-value problem for/3 = 1.0 and 
6 = 0.1,1.0 and 10.0. 
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large, the wave speed approaches cmi,, which now depends on the value of  fi, and 
that the approach to this asymptotic value is rather slow, in line with (88). Note  
that expression (88) also suggests that the rate of  approach of  c to Cmin should 
decrease as/3 is increased, as is confirmed by the results shown in fig. 4. 

Finally, we monitored the development of  the travelling wave profiles from the 
initial input. The results are shown in fig. 5, for/~ = 0.5, 6 = 1.0 (though all the 
other cases we considered have a very similar behaviour) where we plot U and V 
concentration profiles against X at equal time intervals At .  In fig. 5(a) 
( A t  = 3.84) we show initial development of  a reaction-diffusion travelling wave in 
U caused by the local input of  V. The first profile plotted (at r = 0.322) shows a 
small depletion of  U. This deficit in U then increases (by reaction) and spreads (by 

a 0,61 ....... 

0 , 6 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.59 - 

0.58-  

0,57- 

0.55- 

0.54- 

0.53 I I I I I I 
1 ~  ~ 0  300  400 500 ~ 0  

b 1.~- 

1.80-  

1 .75 -  

1~0 1 I I I I 
5 10 15 20  25  

I I I I I 1 

30 35 40 45 50 55  60  

7" 

Fig. 4.Wave speed c calculated from the numerical solution of the initial-value problem for 6 = 1.0 and 
(a) ~ = 10.0, (b)~ = 0.1. 
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a 
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0.2- 

0,1- ~ ~ 

0,0 - -  i i r '~ 'l 
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X 

\ 
120 

Fig. 5. Concentration profiles U and V plotted at equal time intervals At. (a) U profiles,with Ar  = 3.84, 
showing the initial development of the PTW, and (b) V profiles with A r  = 12.8. 

diffusion) as r increases with a travelling wave of permanent form becoming estab- 
lished. This development is more clearly seen in fig. 5(b) where we plot I/" profiles 
at longer times (Ar  = 12.8). Figure 5(b) shows that an excess in autocatalyst con- 
centration is left behind near the origin due to the initial input. This decays slowly 
with a slightly increasing spread through purely diffusive effects (here the concen- 
tration U is effectively zero). For large times the reaction-diffusion front has 
become clearly separated from this local diffusive region. 

An important feature to note about these concentration proftles is that they 
appear to attain a permanent-form somewhat more readily than calculations of the 
wave speed would suggest. This means that the wave profiles have reached the 
form as given by the solution of the PTW equations (16), (17) at times considerably 
shorter than is required for c to reach a value of c,nin. 
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4. Discuss ion 

We have established that when the acidic nitrate is introduced locally into an 
otherwise uniform concentration of the other chemical species (notably the fer- 
roin), which react via kinetic scheme (1), (2), the resulting large time structure is a 
reaction-diffusion travelling wave of permanent form. This wave travels with its 
minimum possible speed, Cm/~, which, in dimensional terms, is given by 

2(kuoDr)  1/2 

V/(U ° +/~) , (89) 

where k and/~ depend on the details of the kinetics and u0 is the initial (uniform) 
concentration offerroin. 

There are two features worth noting about expression (89). Firstly, it is indepen- 
dent of Du, the diffusion coefficient of the ferroin, and involves only Dr, the diffu- 
sion coefficient of the acidic nitrate. Consequently, only values of Dr are required in 
establishing agreement between experimental and theoretically calculated values 
of the wave speed. Conversely, if the measurements taken from travelling wave 
speeds as in the experiments described by Pota et al. [1-3] are to be used to find dif- 
fusion coefficients, only values of Dr are accessible by this route. Secondly, the 
asymptotic wave speed depends on the initial ferroin concentration, and increases 

1/2 from zero (when u0 = 0) monotonically to an upper limit of 2(kDr) as u0 ~ ~ .  It 
is also worth noting that the maximum sensitivity of wave speed (89) to changes in 
u0 occurs when u0 = 1/~. 

We have also shown that the minimum wave speed is attained only asymptoti- 
cally and must be regarded as the large time limit. Moreover, we have shown that 
this asymptotic value is approached only slowly, the perturbation to it being only 
algebraic in t (of O (t- 1 )) for t large. This could well have important consequences in 
the treatment of experimental observations, which, of necessity, are taken at finite 
times. Even though these times will generally be large, there could still be a differ- 
ence between the asymptotic wave speed and the experimentally measured wave 
speed. This difference could well lead to small, though significant, errors if calcula- 
tions are performed, or agreement between theory and experiment is sought, using 
the asymptotic wave speed (89). 

When we considered the travelling wave profiles, their asymptotic forms 
(PTW) were seen to be attained at much shorter times. To illustrate this we 
observed that, even though there could still be a significant difference (of the order 
of 5-10%) between the calculated and asymptotic wave speeds, the PTW structure 
had been attained to within the overall accuracy of the numerical integrations by 
these times. This suggests that the effects of diffusion and reaction interact over 
relatively short time scales to produce their ultimate reaction-diffusion front struc- 
ture and that much longer times have to elapse to allow this front to accelerate 
slowly to reach its asymptotic speed. As a consequence, experimental measure- 
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merits t a k e n  f r o m  the reac t ion-d i f fus ion  wave s t ructures  should  be in m u c h  be t te r  
ag reemen t  wi th  their  theoret ica l ly  ca lcula ted  coun te rpa r t s  and,  perhaps ,  f r o m  a 
m o r e  rel iable guide to corre la t ions  be tween theo ry  and  exper iment .  
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